Article 6419

Title of the article

ON A NUMERICAL METHOD FOR SOLVING NONLINEAR EIGENVALUE PROBLEMS IN THE THEORY OF TM-WAVES PROPAGATION IN PLANE WAVEGUIDES FILLED WITH A NONLINEAR MEDIUM 

Authors

Moskaleva Marina Aleksandrovna, Junior research assistant, the research center of “Supercomputer modeling in electrodynamics”, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: m.a.moskaleva1@gmail.com 

Index UDK

517.927.4, 517.58, 519.62 

DOI

10.21685/2072-3040-2019-4-6 

Abstract

Background. The paper is devoted to nonlinear eigenvalue problems for nonlinear ordinary differential equations. These problems arise in the theory of propagation of TM waves in plane waveguides. The main goal is to justify a numerical method to calculate approximated eigenvalues and eigenfunctions.
Materials and methods. Classical and modern methods of ordinary differential equations are used.
Results. The global unique solvability of Cauchy problems corresponding to the studied problems is proved. This result allows one to justify a numerical method based on shooting by the spectral parameter.
Conclusions. This numerical method is an effective tool for computation approximated eigenvalues. 

Key words

Maxwell’s equations, plane waveguides, nonlinear eigenvalue problem, nonlinear differential equation, shooting method, nonlinear permittivity 

 Download PDF
References

1. Tikhov S. V., Valovik D. V. Journal of Mathematical Analysis and Applications. 2019, vol. 479, pp. 1138–1157.
2. Smirnov Yu. G., Valovik D. V. Journal of Mathematical Physics. 2016, vol. 57 (10), pp. 103504-1–103504-15.
3. Landau L. D., Livshits E. M. Elektrodinamika sploshnykh sred [Electrodynamics of continuous system]. Moscow: Nauka, 1985, 293 p. [In Russian]
4. Shen I. R. Printsipy nelineynoy optiki [Principles of nonlinear optics]. Moscow: Nauka, 1989, 557 p. [In Russian]
5. Akhmediev N. N., Ankevich A. Solitony [Solitons]. Moscow: Fizmat-lit, 2003, 304 p. [In Russian]
6. Manykin E. A. Vzaimodeystvie izlucheniya s veshchestvom. Fenomenologiya nelineynoy optiki [The interaction of radiation with substances. Phenomenology of nonlinear optics]. Moscow: MIFI, 1996, 92 p. [In Russian]
7. Boardman A. D., Egan P., Lederer F., Langbein U., Mihalache D. Third-Order Nonlinear Electromagnetic TE and TM Guided Waves. North-Holland; Amsterdam; London; New York; Tokyo, 1991.
8. Mikhalake D., Fedyanin V. K. Teoreticheskaya i matematicheskaya fizika [Theoretical and mathematical physics]. 1983, no. 54 (3), pp. 443–455. [In Russian]
9. Smirnov Yu. G., Valovik D. V. Physical Review A. 2015, vol. 91 (1), pp. 013840-1–013840-6.
10. Al-Bader S. J., Jamid H. A. IEEE Journal of Quantum Electronics. 1988, vol. 24(10), pp. 2052–2058.
11. Valovik D. V. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2019, vol. 59, no. 5, pp. 838–858. [In Russian]
12. Valovik D. V. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2011, vol. 51, no. 9, pp. 1622–1632. [In Russian]
13. Eleonskii P. N., Oganes’yants L. G., Silin V. P. Soviet Physics JETP. 1972, vol. 35(1), pp. 44–47.
14. Valovik D. V., Tikhov S. V. Differentsial'nye uravneniya [Differential equations]. 2019, vol. 55, no. 12, pp. 1610–1624. [In Russian]
15. Yuskaeva K. A. On the theory of TM-electromagnetic guided waves in a nonlinear planar slab structure: PhD thesis D – 49076. Osnabruck, Germany: Universitat Osnabruck Fachbereich Physik Barbarastraße 7, 2012.
16. Vaynshteyn L. A. Elektromagnitnye volny [Electromagnetic waves]. Moscow: Radio i svyaz', 1988, 440 p. [In Russian]
17. Adams M. Vvedenie v teoriyu opticheskikh volnovodov [Introduction to optical waveguide theory]. Moscow: Mir, 1984, 512 p. [In Russian]
18. Gokhberg I. Ts., Kreyn M. G. Vvedenie v teoriyu lineynykh nesamosopryazhennykh operatorov [Introduction to the theory of linear non-self-adjoint operators]. Moscow: Nauka, 1965, 449 p. [In Russian]
19. Goncharenko A. M., Karpenko V. A. Osnovy teorii opticheskikh volnovodov [Basics of the theory of optical waveguides]. Minsk: Nauka i tekhnika, 1983, 296 p. [In Russian]
20. Vzyatyshev V. F. Dielektricheskie volnovody [Dielectric waveguides]. Moscow: Sovetskoe radio, 1970, 216 p. [In Russian]
21. Bibikov Yu. N. Kurs obyknovennykh differentsial'nykh uravneniy [The course of ordinary differential equations]. Moscow: Vysshaya shkola, 1991, 303 p. [In Russian]
22. Moskaleva M. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2018, no. 4 (48), pp. 39–49. [In Russian]
23. Valovik D. V. Journal of Optics. 2017, vol. 19 (11), pp. 115502-1–115502-16.

 

Дата создания: 21.04.2020 12:22
Дата обновления: 21.04.2020 14:21